7
$\begingroup$
a[1] = Sqrt[s[0]^2 + s[0] + 1] /. s[0] -> 0 a[2] = Sqrt[s[1]^2 + s[1] + 1] /. s[1] -> a[1] a[3] = Sqrt[s[2]^2 + s[2] + 1] /. s[2] -> a[1] + a[2] a[4] = Sqrt[s[3]^2 + s[3] + 1] /. s[3] -> a[1] + a[2] + a[3] f = Sqrt[#^2 + # + 1] &; f[1] f[1 + %] f[1 + f[1] + %] f[1 + f[1] + f[1 + f[1]] + %] f[1 + f[1] + f[1 + f[1]] + f[1 + f[1] + f[1 + f[1]]] + %] 

I have tried the following, but it didn't work well:

 Rest@FoldList[f[+##] &, 0, Table[1, 5]] 
{ f[1], f[1 + f[1]], f[1 + f[1 + f[1]]], f[1 + f[1 + f[1 + f[1]]]], f[1 + f[1 + f[1 + f[1 + f[1]]]]] } 
$\endgroup$
1
  • $\begingroup$ Do you mean NestList[f[1 + #] &, 0, 5]? $\endgroup$ Commented Dec 19, 2016 at 5:36

3 Answers 3

5
$\begingroup$
NestList[# + Sqrt[#^2 + # + 1] &, 0, 4] // Differences // Column 

enter image description here

$\endgroup$
7
$\begingroup$
NestList[f[## & @@ # + #] &, f[1], 3] 
{ f[1], f[1 + f[1]], f[1 + f[1] + f[1 + f[1]]], f[1 + f[1] + f[1 + f[1]] + f[1 + f[1] + f[1 + f[1]]]] } 

alternatively (but we have to start with f[1+f[1]]:

NestList[Insert[#, #, {1, -1}] &, f[1 + f[1]], 2] 
{ f[1 + f[1]], f[1 + f[1] + f[1 + f[1]]], f[1 + f[1] + f[1 + f[1]] + f[1 + f[1] + f[1 + f[1]]]] } 
$\endgroup$
2
$\begingroup$

This may not be ideal or the most elegant, but perhaps it will work or help.

Define (note that int can be whatever range you want):

In[3]:= a[0] = 0; int = Range[4]; 

Create a list of symbols for your LHS:

In[3]:= lhs = a[#] & /@ int Out[3]= {a[1], a[2], a[3], a[4]} 

This gives us your RHS's, primarily just mapping a expr /. rule expression across the iterators {1,2,3,4}:

In[4]:= vals = (Sqrt[s[# - 1]^2 + s[# - 1] + 1] /. s[# - 1] -> FoldList[#1 + a[#2] &, int - 1][[#]]) & /@ int Out[4]= {1, Sqrt[1 + a[1] + a[1]^2], Sqrt[ 1 + a[1] + a[2] + (a[1] + a[2])^2], Sqrt[ 1 + a[1] + a[2] + a[3] + (a[1] + a[2] + a[3])^2]} 

And you can thread Set across them to get your end result:

In[5]:= Thread@Set[Evaluate[lhs], vals] Out[5]= {1, Sqrt[3], Sqrt[2 + Sqrt[3] + (1 + Sqrt[3])^2], Sqrt[ 2 + Sqrt[3] + Sqrt[ 2 + Sqrt[3] + (1 + Sqrt[3])^2] + (1 + Sqrt[3] + Sqrt[ 2 + Sqrt[3] + (1 + Sqrt[3])^2])^2]} 

To verify this...

In[6]:= {a[1], a[2], a[3], a[4]} Out[6]= {1, Sqrt[3], Sqrt[2 + Sqrt[3] + (1 + Sqrt[3])^2], Sqrt[ 2 + Sqrt[3] + Sqrt[ 2 + Sqrt[3] + (1 + Sqrt[3])^2] + (1 + Sqrt[3] + Sqrt[ 2 + Sqrt[3] + (1 + Sqrt[3])^2])^2]} 

Like I said, you can let int be as high as you want to define as many values of a[n] are necessary. This isn't recursive, but it would work. Hoping someone can provide a better solution :)

$\endgroup$
2
  • $\begingroup$ Thank you, but it's not I'm looking for. $\endgroup$ Commented Dec 19, 2016 at 6:04
  • $\begingroup$ @mathe Edited it based on your edits :) $\endgroup$ Commented Dec 19, 2016 at 6:38

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.