ScalingTransform[{1,1,0}] is the project transformation to X-Y plane etc.
r[t_] := {Cos[t] (1 + Cos[3 t]), (1 + Cos[3 t]) Sin[t], Sin[3 t]}; Show[ ParametricPlot3D[ Through@(ScalingTransform /@ {{1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {0, 1, 1}})@r[t] // Evaluate, {t, 0, 2 π}, PlotStyle -> {Directive[AbsoluteThickness[3], Red], Directive[Dashed, Green], Directive[Dashed, Cyan], Directive[Dashed, Yellow]}, Boxed -> False, Axes -> False], Graphics3D[{InfinitePlane[{0, 0, 0}, {{1, 0, 0}, {0, 1, 0}}], InfinitePlane[{0, 0, 0}, {{0, 1, 0}, {0, 0, 1}}], InfinitePlane[{0, 0, 0}, {{0, 0, 1}, {1, 0, 0}}]}]]

ParametricPlot3DnotParametric3D. Consult the documentation. For the planes, just do three plots and set z to 0, y to 0, and x to zero and wrap in aShowlikeShow[ParametricPlot3D[...], ParametricPlot3D[...], ParametricPlot3D[...], ParametricPlot3D[...]]$\endgroup$