While solving a research problem, I came across the following set of 8 equations involving 4 complex variables namely, $c2$, $c3$, $c4$, and $c5$ with complex coefficients and 2 real variables namely, $c1$ and $c6$. The complex variables are such that $c2=c3^{*}$ and $c4=c5^{*}$; where, * denotes the complex conjugate.
$2c2 c3+c4 c5=\frac{1}{2\Delta^2} \tag{1}$ $ic1 c4-2i c3 c4-i c1 c5+2ic2 c5=0 \tag{2}$ $c1^2-2c1 c2-2c1c3+4c2c3=0 \tag{3}$ $c6+(i c4-ic5)n\Delta+(c1-c2-c3)n^2\Delta^2=0\tag{4}$ $c5+(ic1-2ic3)n\Delta=-n\tag{5}$ $c4+(-ic1+2ic2)n\Delta=-n\tag{6}$ $c2=\frac{1}{\Delta}(k+il)\tag{7}$ $c3=\frac{1}{\Delta}(k-il)\tag{8}$
Also, $k,l,\Delta,n$ are real constants.
Using equations $(7)$ and $(8)$ and letting $c4=c+id$, $c5=c-id$ ; $\{c,d\in\mathbb{R}\}$, I translated the above-mentioned equations into the following Mathematica code:
Solve[c^2 + d^2 + (2 k^2)/\[CapitalDelta]^2 + (2 l^2)/\[CapitalDelta]^2 == 1/(2 \[CapitalDelta]^2) && -2 c1 d + (4 d k)/\[CapitalDelta] - (4 c l)/\[CapitalDelta] == 0 && c1^2 + (4 k^2)/\[CapitalDelta]^2 + (4 l^2)/\[CapitalDelta]^2 - (4 c1 k)/\[CapitalDelta] == 0 && c - I (d + n (-c1 + (2 k)/\[CapitalDelta] - (2 I l)/\[CapitalDelta]) \[CapitalDelta]) == -n && c + I (d + n (-c1 + (2 k)/\[CapitalDelta] + (2 I l)/\[CapitalDelta]) \[CapitalDelta]) == -n && c6 + n \[CapitalDelta] (-2 d + n (c1 - (2 k)/\[CapitalDelta]) \[CapitalDelta]) == 0, {c, d, c1, c6}]
Now, I need to solve for $c$, $d$, $c_1$, and $c_6$. I have been solving this using Mathematica and also manually by finding ways to reduce the number of equations to match the number of unknowns but without much success. Any guidance on how to approach this would be much appreciated.
Thanks.
k,lare constants? They appear to be real and imaginary parts of (removed) variablesc4,c5. $\endgroup$