I have the following problem I want to solve the following equalities.
My used code:
Clear["Global`*"] d = 0.75; qa[ta_] = (ta)^(1/ya) - 1; qb[tb_] = (tb)^(1/yb) - 1; ya = 3; yb = 2; SOLCEQ1 = Table[Solve[ qa'[ta]/Log[d] (d^(tb + 1)/d^(ta) - 1) == qa[ta] && qb'[tb]/Log[d] + qb[tb] == b qa[ta] && tb > ta && ta > 0, {tb, ta}], {b, 0.8, 1, 0.1}] The answer is:
{{{tb -> 4.45415, ta -> 2.50827}}, {{tb -> 4.57749, ta -> 2.53496}}, {{tb -> 4.70672, ta -> 2.56222}}} But if I now change (swap) ya and yb.
Code:
Clear["Global`*"] d = 0.75; qa[ta_] = (ta)^(1/ya) - 1; qb[tb_] = (tb)^(1/yb) - 1; ya = 2; yb = 3; SOLCEQ1 = Table[Solve[ qa'[ta]/Log[d] (d^(tb + 1)/d^(ta) - 1) == qa[ta] && qb'[tb]/Log[d] + qb[tb] == b qa[ta] && tb > ta && ta > 0, {tb, ta}], {b, 0.8, 1, 0.1}] The answer is:
{Solve[-((1.73803 (-1 + 0.75^(1 - ta + tb)))/Sqrt[ta]) == -1 + Sqrt[ ta] && -1 - 1.15869/tb^(2/3) + tb^(1/3) == 0.8 (-1 + Sqrt[ta]) && tb > ta && ta > 0, {tb, ta}], Solve[-((1.73803 (-1 + 0.75^(1 - ta + tb)))/Sqrt[ta]) == -1 + Sqrt[ ta] && -1 - 1.15869/tb^(2/3) + tb^(1/3) == 0.9 (-1 + Sqrt[ta]) && tb > ta && ta > 0, {tb, ta}], Solve[-((1.73803 (-1 + 0.75^(1 - ta + tb)))/Sqrt[ta]) == -1 + Sqrt[ ta] && -1 - 1.15869/tb^(2/3) + tb^(1/3) == 1. (-1 + Sqrt[ta]) && tb > ta && ta > 0, {tb, ta}]} So the programm do not start the Solve function process. I tried everything. If somebody knows a solution, I would be very thankful.