The standard method to treat trigonometric and inverse trigonometric algebra is TrigToExp and Simplify expressions of Log with identical factors or Exp with identical arguments.
exprs[r_] := 2 ArcCsc[r] + 7 ArcTan[Sqrt[-1 + r^2]] + 10 ArcTan[r - Sqrt[-1 + r^2]] expr // TrigToExp
$$-2 i \log \left(\sqrt{1-\frac{1}{r^2}}+\frac{i}{r}\right)-5 i \log \left(1+i \left(r-\sqrt{r^2-1}\right)\right)+5 i \log \left(1-i \left(r-\sqrt{r^2-1}\right)\right)-\frac{7}{2} i \log \left(1+i \sqrt{r^2-1}\right)+\frac{7}{2} i \log \left(1-i \sqrt{r^2-1}\right)$$
bxprs[r_] = I ((-I expr // TrigToExp) //. {a_ Log[x_] + b_ Log[y_] /; (a + b == 0) :> a Log[x/y]})
$$i \ \left(-2 \log \left(\sqrt{1-\frac{1}{r^2}}+\frac{i}{r}\right)+5 \ \log \left(\frac{1-i \left(r-\sqrt{r^2-1}\right)}{1+i \left(r-\sqrt{r^2-1}\right)}\right)+\frac{7}{2} \ \log \left(\frac{1-i \sqrt{r^2-1}}{1+i \sqrt{r^2-1}}\right)\right)$$
For all algebraic transformations of expressions with branch cuts, the result has to be confirmed graphically
Plot[Evaluate[{ReIm[exprs[r]], ReIm[bxprs[r]]}], {r, -2, 2}, PlotLegends -> {"Re 1", "Im 1", "Re 2", "Im 2"}, Exclusions -> "Discontinuities", Ticks -> {Automatic, Range[-4 \[Pi], 6 \[Pi], 2 \[Pi]]}, PlotStyle -> {{Blue, Thickness[0.02]}, {Red,Thickness[0.02]}, {Black}, {White}}]

expr/.r->1and Mathematica gave back (7*Pi)/2, and from the plot it is clear that is same value for all r>0 $\endgroup$FullSimplify[expr /. r -> 1/Sin[a], Assumptions -> 0 < a< Pi/2]? In MA14.1 it almost reaches the desired answer. $\endgroup$