I have expressions $\log\frac{z}{z-1}$ and $\frac{1}{z \left( 1 + W_0\left(-\frac{1}{e z}\right) \right)} $ visualized below. There's a branch cut along the Im[z]=0 plane, what is an efficient way to visualize their branch cuts in a 2D plot?
plotStieltjes[expr_] := ParametricPlot3D[{x, y^3/(1/2)^2, Im@expr /. z -> (x + I y^3/(1/2)^2)}, {x, -1/2, 3/2}, {y, -1/2, 1/2}, PlotRange -> {Automatic, Automatic, {-5, 5}}, PlotPoints -> 25, MaxRecursion -> 4, ColorFunction -> (ColorData["TemperatureMap"][ Rescale[#3, {4, -4}, {0, 1}]] &), ColorFunctionScaling -> False, ExclusionsStyle -> {None, Directive[Red, Thick]}, MeshFunctions -> {#3 &}, Mesh -> {Range[-3, 3, .5]}, MeshStyle -> {{Opacity[0.5], Darker[Blue]}, {Opacity[0.3], Gray}}, PlotStyle -> Directive[Specularity[White, 10], Opacity[0.95]], Exclusions -> {{Im[z] == 0} /. z -> x + I y}, Lighting -> {{"Ambient", GrayLevel[0.3]}, {"Directional", White, ImageScaled[{0, 0, 2}]}, {"Directional", White, ImageScaled[{1, 1, 1}]}}, AxesLabel -> {Style["Re[z]", FontSize -> 14, Bold], Style["Im[z]", FontSize -> 14, Bold], Style["Im[f(z)]", FontSize -> 14, Bold]}, BoxRatios -> {1, 1, 0.6}, ViewPoint -> {-2.5, 2.5, 1.3}, ViewVertical -> {0, 0, 1}, PlotTheme -> "Detailed", Background -> GrayLevel[0.95], ImageSize -> Large, AxesStyle -> Directive[Black, Thickness[0.002]], Boxed -> False, FaceGrids -> None, Ticks -> {{0, 1}, None, {-Pi, 0, Pi}}, BaseStyle -> {FontFamily -> "Helvetica"}] plotStieltjes[Log[z/(z - 1)]] plotStieltjes[1/(z (1 + ProductLog[-(1/(E z))]))] 

z->x+0 Iand plot it for{x,0,1}, no? $\endgroup$