My function is
(* condição para o valor de b0 *) σ = 0.6 ; minroot[g_?NumericQ, b_?NumericQ] := Module[{rts, r}, rts = r /. Solve[1 - (b/r)^2 - g^-2*(2/15*σ^9 (1/(r - 1)^9 - 1/(r + 1)^9 - 9/(8 r) (1/(r - 1)^8 - 1/(r + 1)^8)) - σ^3 (1/(r - 1)^3 - 1/(r + 1)^3 - 3/(2 r) (1/(r - 1)^2 - 1/(r + 1)^2))) == 0, r]; rts = Select[rts, With[{nval = N[#, 100]}, Im[nval] == 0 && nval > 0] &]; Max[rts]]; rootmin[g_?NumberQ] := Module[{Rrmts, b}, Rrmts = b /. FindRoot[Re[aA[g, b, 5]] == 0, {b, 1, 2}, Method -> "Brent"]; Rrmts]; (* angulo de espalhamento *) aA[g_?NumberQ, b_?NumberQ, i_] := Pi - 2 b NIntegrate[ 1/(r^2*Sqrt[ 1 - (b/r)^2 - g^-2*(2/15*σ^9 (1/(r - 1)^9 - 1/(r + 1)^9 - 9/(8 r) (1/(r - 1)^8 - 1/(r + 1)^8)) - σ^3 (1/(r - 1)^3 - 1/(r + 1)^3 - 3/(2 r) (1/(r - 1)^2 - 1/(r + 1)^2)))]), {r, minroot[g, b], Infinity}, Exclusions -> {r^2* Sqrt[1 - (b/r)^2 - g^-2*(2/ 15*σ^9 (1/(r - 1)^9 - 1/(r + 1)^9 - 9/(8 r) (1/(r - 1)^8 - 1/(r + 1)^8)) - σ^3 (1/(r - 1)^3 - 1/(r + 1)^3 - 3/(2 r) (1/(r - 1)^2 - 1/(r + 1)^2)))] == 0}, MaxRecursion -> i, Method -> {Automatic, "SymbolicProcessing" -> 0}]; When I evaluate
rootmin[0.3] I get
Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.
but when I evaluate
rootmin[0.4] 1.95804
I still get some errors, but I get a result.
Why? I want to evaluate rootmin[0.1], for example, and I can't.

NIntegrate::inumr,FindRoot::nlnumetc. Also, in the definitionaA, you useminroot[g,b]; Is it the same asrootmin[g,b]? $\endgroup$minroot. $\endgroup$minroot, it is pretty clear what your problem is, and I have an answer I would like to post. $\endgroup$