I'm trying to solve the following equation:
eqn = (-(Sqrt[3 - P] - I*Sqrt[P]) + (Sqrt[3 - P] + I*Sqrt[P])* Exp[-2*Pi*Sqrt[3 - P]])/((Sqrt[3 - P] - I*Sqrt[P]) + (Sqrt[3 - P] + I*Sqrt[P])* Exp[-2*Pi*Sqrt[3 - P]]) == I*Sqrt[P/(3 - P)]*(1 + Exp[-2*I*Pi*Sqrt[P]])/(1 - Exp[-2*I*Pi*Sqrt[P]]); eqn //TeXForm $\frac{e^{-2 \pi \sqrt{3-P}} \left(\sqrt{3-P}+i \sqrt{P}\right)-\sqrt{3-P}+i \sqrt{P}}{e^{-2 \pi \sqrt{3-P}} \left(\sqrt{3-P}+i \sqrt{P}\right)+\sqrt{3-P}-i \sqrt{P}}=\frac{i \left(1+e^{-2 i \pi \sqrt{P}}\right) \sqrt{\frac{P}{3-P}}}{1-e^{-2 i \pi \sqrt{P}}}$
The command Solve hasn't been successful so far:
Solve[eqn, P] Any ideas?



FindRoot. $\endgroup$Pplane, so you can see where the function's zeros are likely to be. For instance, you could start withContourPlot[Abs[func[x + I y]], {x, 0, 10}, {y, -2, 2}](Argis done analogously). $\endgroup$