I have the following dataframe
2001-01-01 2001-01-02 2001-01-03 1 0 8 I want to drop every column, which is smaller than 2001-01-02, i.e. my df should look like this:
2001-01-02 2001-01-03 0 8 Does anybody know how to do it?
Use 'inverse' condition < to >=, because need only values equal or higher:
df = pd.DataFrame([[1,0,8]], columns = pd.date_range('2001-01-01', periods=3)) print (df) 2001-01-01 2001-01-02 2001-01-03 0 1 0 8 print (df.columns >= '2001-01-02') [False True True] df1 = df.loc[:, df.columns >= '2001-01-02'] print (df1) 2001-01-02 2001-01-03 0 0 8 cols = df.columns[df.columns >= '2001-01-02'] df1 = df[cols] print (df1) 2001-01-02 2001-01-03 0 0 8 Another solution is add ~ for inverse boolean array:
df1 = df.loc[:, ~(df.columns < '2001-01-02')] print (df1) 2001-01-02 2001-01-03 0 0 8 You can use label slices with loc
df.loc[:, :'2001-01-02'] 2001-01-01 2001-01-02 0 1 0 And
df.loc[:, '2001-01-02':] 2001-01-02 2001-01-03 0 0 8