user_id user_verified 1 False 2 False 3 False 4 True 5 False 6 True How to remove all the 'False'values and keep 'True' values?
Assuming your data is in a dataframe as specified in a similar format below:
data = pd.DataFrame(zip(range(1,7), [False, False, False, False, True, False, True]), columns=['user_id', 'user_verified']) You can simply use masking since the user_verified is boolean:
verified = data[data['user_verified']]
df = df[df['user_verified'] == True]