Yes, this is correct. You can, e.g., read this off from the conditional distribution of the response given the random effects shown in expression $(2)$ in this lme4 vignette. Such an error distribution is called "spherical".
Addendum
lme4 can fit linear mixed models obeying measurement models of the form $$ \boldsymbol{\mathcal{Y}} = \boldsymbol X \boldsymbol \beta + \boldsymbol Z \boldsymbol{\mathcal{B}} + \boldsymbol o + \boldsymbol \epsilon, $$ with response vector $\boldsymbol{\mathcal{Y}} \in \mathbb R^n$, fixed-effects design matrix $\boldsymbol X \in \mathbb R^{n \times p}$, fixed-effects parameter vector $\boldsymbol \beta \in \mathbb R^p$, random-effects design matrix $\boldsymbol Z \in \mathbb R^{n \times q}$, random-effects vector $\boldsymbol{\mathcal{B}} \in \mathbb R^q$, (known) offset vector $\boldsymbol o \in \mathbb R^n$, error vector $\boldsymbol \epsilon \in \mathbb R^n$;
and the distributional assumption $$ \begin{pmatrix} \boldsymbol{\mathcal{B}}\\ \boldsymbol \epsilon \end{pmatrix} \sim \mathop{\mathcal N_{q + n}} \left( \begin{pmatrix} \mathbf 0\\ \mathbf 0 \end{pmatrix}, \begin{pmatrix} \boldsymbol \Sigma_{\boldsymbol \theta} & \mathbf 0\\ \mathbf 0 & \sigma^2 \boldsymbol I_n \end{pmatrix} \right), $$ with positive semi-definite covariance matrix $\boldsymbol \Sigma_{\boldsymbol \theta} \in \mathbb R^{q \times q}$ parameterized by the covariance parameter vector $\boldsymbol \theta \in \mathbb R^m$.
Such linear mixed models can also be written in the hierarchical form $$ \boldsymbol{\mathcal{Y}} \,|\, \boldsymbol{\mathcal{B}} = \boldsymbol b \sim \mathop{\mathcal N_n} \left( \boldsymbol X \boldsymbol \beta + \boldsymbol Z \boldsymbol b + \boldsymbol o, \sigma^2 \boldsymbol I_n \right), \\ \boldsymbol{\mathcal{B}} \sim \mathop{\mathcal N_q} \left( \mathbf 0, \boldsymbol \Sigma_{\boldsymbol \theta} \right), $$ which is the form used in the lme4 vignettes.
From this we can see that the implied distribution of the error vector $\boldsymbol \epsilon$ is $\mathop{\mathcal N_n}\left(\mathbf 0, \sigma^2 \boldsymbol I_n\right)$, a spherical multivariate normal distribution.
lme4package, not of $\textsf{R}$. Other package, such asnlme, implement R-side effects or covariance structures. $\endgroup$lme4did unstructured only. This page shows how you can trick it into fitting certain structured covariances - never tried though & looks complicated. $\endgroup$