I tried to solve the Laplace equation by two different methods, I made two 3D plots, but they didn't look the same. Is anything wrong? what can I do? I tried to use Fourier series at first and some Mathematica code
Clear["Global`*"] (*rectangle 0<x<L,0<y<H*) L = 4; H = 3; (*boundary conditions*) f1[x_] := If[L > x > 0, 23] f2[x_] := If[L > x > 0, 1] g1[y_] := If[H > y > 0, -2] g2[y_] := If[H > y > 0, 31] (*coefficient A(n)*) A[n_] := (2/(L*Sinh[n*Pi*H/L]))*Integrate[f2[x]*Sin[(n*Pi*x)/L], {x, 0, L}] A[n] (*coefficient B(n)*) B[n_] := (2/(L*Sinh[n*Pi*H/L]))*Integrate[f1[x]*Sin[(n*Pi*x)/L], {x, 0, L}] B[n] (*coefficient C(n)*) C1[n_] := (2/(H*Sinh[n*Pi*L/H]))*Integrate[g2[y]*Sin[(n*Pi*y)/L], {y, 0, H}] C1[n] (*coefficient D(n)*) D1[n_] := (2/(H*Sinh[n*Pi*L/H]))*Integrate[g1[y]*Sin[(n*Pi*y)/L], {y, 0, H}] D1[n] (*Partial solutions*) w1[x_, y_, N_] := Sum[A[n]*Sinh[n*Pi*y/L]*Sin[n*Pi*x/L], {n, 1, N}] w2[x_, y_, N_] := Sum[B[n]*Sinh[n*Pi*y/L]*Sin[n*Pi*x/L], {n, 1, N}] w3[x_, y_, N_] := Sum[C1[n]*Sinh[n*Pi*x/H]*Sin[n*Pi*y/H], {n, 1, N}] w4[x_, y_, N_] := Sum[D1[n]*Sinh[n*Pi*x/H]*Sin[n*Pi*y/H], {n, 1, N}] w[x_, y_, N_] := w1[x, y, N] + w2[x, y, N] + w3[x, y, N] + w4[x, y, N] (*General solution*) sol2 = w[x, y, 30] Plot3D[sol2, {x, 0, L}, {y, 0, H}, Mesh -> Automatic, MeshFunctions -> {#3 &}, PlotTheme -> Automatic, AxesLabel -> {"x", "y", "w"}, PlotLabel -> "Laplace equation"] leqn = Laplacian[u[x, y], {x, y}] == 0; bc = {u[x, 0] == 23, u[x, H] == 1, u[0, y] == -2, u[L, y] == 31}; sol = FullSimplify[u[x, y] /. DSolve[{leqn, bc}, u[x, y], {x, y}][[1]]] asol = sol /. \[Infinity] -> 30 // Activate Plot3D[asol, {x, 0, L}, {y, 0, H}, PlotRange -> All]