I'm learning how to use Keras and I've had reasonable success with my labelled dataset using the examples on Chollet's Deep Learning for Python. The data set is ~1000 Time Series with length 3125 with 3 potential classes.
I'd like to go beyond the basic Dense layers which give me about 70% prediction rate and the book goes on to discuss LSTM and RNN layers.
All the examples seem to use datasets with multiple features for each timeseries and I'm struggling to work out how to implement my data as a result.
If for example, I have 1000x3125 Time Series, how do I feed that into something like the SimpleRNN or LSTM layer? Am I missing some fundamental knowledge of what these layers do?
Current code:
import pandas as pd import numpy as np import os from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM, Dropout, SimpleRNN, Embedding, Reshape from keras.utils import to_categorical from keras import regularizers from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt def readData(): # Get labels from the labels.txt file labels = pd.read_csv('labels.txt', header = None) labels = labels.values labels = labels-1 print('One Hot Encoding Data...') labels = to_categorical(labels) data = pd.read_csv('ts.txt', header = None) return data, labels print('Reading data...') data, labels = readData() print('Splitting Data') data_train, data_test, labels_train, labels_test = train_test_split(data, labels) print('Building Model...') #Create model model = Sequential() ## LSTM / RNN goes here ## model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print('Training NN...') history = model.fit(data_train, labels_train, epochs=1000, batch_size=50, validation_split=0.25,verbose=2) results = model.evaluate(data_test, labels_test) predictions = model.predict(data_test) print(predictions[0].shape) print(np.sum(predictions[0])) print(np.argmax(predictions[0])) print(results) acc = history.history['acc'] val_acc = history.history['val_acc'] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()