Below is a problem I did. The answer I got differed from the book by a factor of $2$. An online calculator get the book's answer. I would like to know where I went wrong.
Problem:
Evalaute the following integral: $$ \int \frac{dx}{ \sqrt{9x^2 - 6x + 5} } \,\, dx $$ Answer:
Let $I$ be the integral we are trying to evaluate. \begin{align*} I &= \int \frac{dx } { 3 \sqrt{x^2 - \left( \frac{2}{3} \right) x + \frac{5}{9} } } \\ 3I &= \int \frac{dx } { \sqrt{ \left( x - \frac{1}{3} \right)^2 + \left( \frac{2}{3} \right) ^ 2 } } \\ u &= x - \frac{1}{3} \\ du &= dx \\ 3I &= \int \frac{du } { \sqrt{ u^2 + \left( \frac{2}{3} \right) ^ 2 } } \\ u &= \left( \frac{2}{3} \right) \tan \left( \theta \right) \\ du &= \left( \frac{2}{3} \right) \sec^2 \left( \theta \right) \,\, d\theta \\ % 3I &= \int \frac{ \left( \frac{2}{3} \right) \sec^2 \left( \theta \right) \,\, d\theta } { \sqrt{ \left( \frac{4}{9} \right)\tan^2 \left( \theta \right) + \left( \frac{2}{3} \right) ^ 2 } } \\ 3I &= \int \frac{ \left( \frac{2}{3} \right) \sec^2 \left( \theta \right) \,\, d\theta } { \left( \frac{2}{3} \right)\sqrt{ \tan ^2 \left( \theta \right) + 1 } } \\ 3I &= \int \frac{ \sec^2 \theta \,\, d\theta } { \sec \theta } \\ 3I &= \int \sec \theta \,\, d\theta \end{align*} \begin{align*} 3I &= \ln{| \sec \theta + \tan \theta |} + C_1 \\ 3I &= \ln{| \sqrt{ \tan^2 \theta + 1 } + \tan \theta |} + C_1 \\ 3I &= \ln{\Bigg| \sqrt{ \left( \frac{9}{4} \right) u^2 + 1 } + \left( \frac{3}{2}\right) u \Bigg| } + C_1 \\ 3I &= \ln{\Bigg| \sqrt{ \left( \frac{9}{4} \right) \left( x - \frac{1}{3} \right) ^2 + 1 } + \left( \frac{3}{2}\right) \left( x - \frac{1}{3} \right) \Bigg| } + C_1 \\ I &= \left( \frac{1}{3}\right) \ln{\Bigg| \sqrt{ \left( \frac{9}{4} \right) \left( x - \frac{1}{3} \right) ^2 + 1 } + \left( \frac{3}{2}\right)x - \left( \frac{1}{2} \right) \Bigg| } + C \\ % I &= \left( \frac{1}{3}\right) \ln{\Bigg| \sqrt{ \left( \frac{9}{4} \right) \left( x^2 - \left( \frac{2}{3} \right) x + \frac{1}{9} \right) + 1 } + \left( \frac{3}{2}\right)x - \left( \frac{1}{2} \right) \Bigg| } + C \\ % I &= \left( \frac{1}{3}\right) \ln{\Bigg| \sqrt{ \left( \frac{9}{4}\right) x^2 - \left( \frac{3}{2} \right) x + \frac{5}{4} } + \left( \frac{3}{2}\right)x - \left( \frac{1}{2} \right) \Bigg| } + C \\ I &= \left( \frac{1}{6}\right) \ln{\Bigg| \sqrt{ 9x^2 - 6x + 5 } + 3x - 1 \Bigg| } + C \\ \end{align*} The book's answer is: $$ \left( \frac{1}{3} \right) \ln{| \sqrt{9x^2 - 6x + 5} + 3x - 1 |} + C $$
Based upon comments from the group, I updated the last step. My answer is now: $$ I = \left( \frac{1}{3}\right) \ln{\Bigg| \frac{ \sqrt{ 9x^2 - 6x + 5 } + 3x - 1 }{2} \Bigg| } + C $$ However, this answer is still wrong. I would like to know where I went wrong.