1
$\begingroup$

The question is: Let $\chi_1,\chi_2,\chi_3,\chi_4$ be Dirichlet characters in $(\mathbb Z/N\mathbb Z)^*$ and they are distinct pairwise.

Can we proof that $\chi_1+\chi_2\neq\chi_3+\chi_4$? Or can we give an example of $\chi_1+\chi_2=\chi_3+\chi_4$?

$~$

Background: I get this question when calculating weight $1$-Eisenstein series.

$~$

My approach: I can prove $\chi_1+\chi_2\neq\chi_3+\chi_4$ when $N$ is a power of prime. However, I don't know how to get a general result. The calculation as follows.

First assume that $N$ is a power of an odd prime, then $(\mathbb Z/N\mathbb Z)^*$ has a generator, say $r$. Then we can write all characters of $(\mathbb Z/N\mathbb Z)^*$ in the following form:

$$\chi_k(r^n)=e^{2\pi ikn/\varphi(N)},\ k=1,\cdots,\varphi(N).$$

Assuming $\chi_{k_1}+\chi_{k_2}=\chi_{k_3}+\chi_{k_4}$, then $\chi_{k_1}(r)+\chi_{k_2}(r)=\chi_{k_3}(r)+\chi_{k_4}(r)$. Since $\chi_{k_i}(r)$ are distinct pairwise, we obtain $\chi_{k_1}(r)+\chi_{k_2}(r)=\chi_{k_3}(r)+\chi_{k_4}(r)=0$. Thus $k_1-k_2\equiv\varphi(N)/2\ (\text{mod}\ \varphi(N))$. Moreover, we have $\chi_{k_1}(r^2)=\chi_{k_2}(r^2)$ and $\chi_{k_3}(r^2)=\chi_{k_4}(r^2)$. So by the assumption we have $\chi_{k_1}(r^2)=\chi_{k_3}(r^2)$, which yields $k_1-k_3\equiv\varphi(N)/2\ (\text{mod}\ \varphi(N))$ and hence $k_2=k_3$, a contradiction.

Next we assume that $N=2^t\ (t\geq3)$ (Since we don't have $4$ distinct characters in the cases $N=2,4$). It is known that $(\mathbb Z/N\mathbb Z)^*=\langle-1,5\rangle$ and the element $5$ generates a subgroup of order $2^{t-2}$. In this case, we know the expressions of all characters, too. Let $\chi_{k,m}\ (k=1,\cdots,2^{t-2};m=1,2)$ denotes all characters, where

$$\chi_{k,m}(5)=e^{2\pi ik/2^{t-2}}\text{ and }\chi_{k,m}(-1)=(-1)^m.$$

Assuming $\chi_{k_1,m_1}+\chi_{k_2,m_2}=\chi_{k_3,m_3}+\chi_{k_4,m_4}$, then $\chi_{k_1,m_1}(5)+\chi_{k_2,m_2}(5)=\chi_{k_3,m_3}(5)+\chi_{k_4,m_4}(5)$. Moreover, $\chi_{k,m}(5)$ repeats exactly twice (When $k_1=k_2$ but $m_1\neq m_2$).

  1. If $\chi_{k_1,m_1}(5)=\chi_{k_3,m_3}(5)$ and $\chi_{k_2,m_2}(5)=\chi_{k_4,m_4}(5)$, without loss of generality, we have $\chi_{k_1,m_1}(-1)=1$ and $\chi_{k_3,m_3}(-1)=-1$. Now we consider

$$\chi_{k_1,m_1}(-1)+\chi_{k_2,m_2}(-1)=\chi_{k_3,m_3}(-1)+\chi_{k_4,m_4}(-1).$$

Thus $\chi_{k_2,m_2}(-1)=-1$ and $\chi_{k_4,m_4}(-1)=1$. Thereby from

$$\chi_{k_1,m_1}(-5)+\chi_{k_2,m_2}(-5)=\chi_{k_3,m_3}(-5)+\chi_{k_4,m_4}(-5)$$

we obtain $\chi_{k_1,m_1}(5)-\chi_{k_2,m_2}(5)=-\chi_{k_3,m_3}(5)+\chi_{k_4,m_4}(5)$, which implies $\chi_{k_1,m_1}(5)=\chi_{k_4,m_4}(5)$, a contradiction.

  1. If $\chi_{k,m}(5)$ are distinct pairwise, then $\chi_{k_1,m_1}(5)+\chi_{k_2,m_2}(5)=\chi_{k_3,m_3}(5)+\chi_{k_4,m_4}(5)=0$. Similarly we get $k_2=k_3$ and so $\chi_{k_2,m_2}(5)=\chi_{k_3,m_3}(5)$, which contradicts the assumption.

Any comment is appreciated :)

$\endgroup$
2
  • 2
    $\begingroup$ The $\chi\bmod N$ are $\Bbb{C}$-linearly independent because there are $\varphi(N)$ of them and with $f_a(n)=\frac1{\varphi(N)}\sum_{\chi\bmod N} \overline{\chi}(a) \chi(n)$, $a,n\in \Bbb{Z}/N\Bbb{Z}^\times$ we have $f_n(n)=1$ and $f_a(n)=0$ if $n\ne a$. Clearly the $f_a$ generate a $\varphi(N)$ dimensional vector space whence so do the $\chi\bmod N$. $\endgroup$ Commented Nov 27, 2022 at 19:22
  • $\begingroup$ Thanks! I get it. @reuns $\endgroup$ Commented Nov 28, 2022 at 4:25

2 Answers 2

3
$\begingroup$

Define $f(n)$ as follows

$$ f(n)=\chi_1(n)+\chi_2(n)-\chi_3(n)-\chi_4(n), $$

and by the orthogonality relationship among Dirichlet characters, we have

$$ \sum_{\substack{1\le n\le N\\(n,N)=1}}\overline\chi_1(n)f(n)=1. $$

If $f(n)\equiv0$, then this relationship will be violated. Thus, $\chi_1(n)+\chi_2(n)=\chi_3(n)+\chi_4(n)$ cannot hold for every $n$.

$\endgroup$
0
2
$\begingroup$

Artin proved that for a finite abelian group $G$, the set of all characters of $G$, meaning the homorphisms $G \to \mathbf C^\times$, are linearly independent functions on $G$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.