I have a DataFrame from which I want to normalize some arbitrary columns using another arbitrary column:
import itertools as it import numpy as np import pandas as pd header = tuple(['h_seqNum', 'h_stamp', 'user_id']) joints = tuple(['head', 'neck', 'torso']) attribs = tuple(['pos_x','pos_y','pos_z']) all_columns = it.izip(*it.product(joints, attribs)) multiind_first = list(it.chain(['header']*len(header), all_columns.next(), ['pose',])) multiind_second = list(it.chain(header, all_columns.next(), ['pose',])) df = pd.DataFrame(np.random.rand(65).reshape(5,13), columns = pd.MultiIndex.from_arrays([multiind_first, multiind_second], names=['joint', 'attrib'])) The resulting DataFrame is something like this one:
joint header head neck torso pose attrib h_seqNum h_stamp user_id pos_x pos_y pos_z pos_x pos_y pos_z pos_x pos_y pos_z pose 0 0.681 0.059 0.607 0.093 0.504 0.975 0.317 0.739 0.129 0.759 0.254 0.814 1 1 0.914 0.420 0.305 0.242 0.700 0.180 0.324 0.171 0.477 0.943 0.877 0.069 0 2 0.522 0.395 0.118 0.739 0.653 0.326 0.947 0.517 0.036 0.647 0.079 0.227 0 3 0.475 0.815 0.792 0.208 0.472 0.427 0.213 0.544 0.440 0.033 0.636 0.527 2 4 0.767 0.774 0.983 0.646 0.949 0.947 0.402 0.015 0.913 0.734 0.192 0.032 0 I want to normalize all the columns (attrib) belonging to an arbitrary joint (eg. 'head') using another arbitrary joint (eg. 'torso'). For instance something like.
df['head'] = df['head'] - df['torso'] df['neck'] = df['neck'] - df['torso'] # Note that torso remains "unnormalized" To do so I wrote a function:
def normalize_joints(df, from_joint): joint_names = set(joints) - set([from_joint,]) for j in list(joint_names): df[j] = df[j] - df[norm_name] However, when I execute this function I get the following error:
normalize_joints(df, 'torso') --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-414-47f39f04716d> in <module>() ----> 1 normalize_joints(df, 'torso') <ipython-input-407-cf13a67fabd8> in normalize_joints(df, from_joint) 2 joint_names = set(joints) - set([from_joint,]) 3 for j in list(joint_names): ----> 4 df[j] = df[j] - df[from_joint] /Library/Python/2.7/site-packages/pandas/core/frame.pyc in __setitem__(self, key, value) 2117 fill_value, limit, takeable=takeable) 2118 -> 2119 return frame 2120 2121 def _reindex_index(self, new_index, method, copy, level, fill_value=NA, /Library/Python/2.7/site-packages/pandas/core/frame.pyc in _set_item(self, key, value) 2164 @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs) 2165 def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, -> 2166 limit=None, fill_value=np.nan): 2167 return super(DataFrame, self).reindex_axis(labels=labels, axis=axis, 2168 method=method, level=level, /Library/Python/2.7/site-packages/pandas/core/generic.pyc in _set_item(self, key, value) 677 678 __bool__ = __nonzero__ --> 679 680 def bool(self): 681 """ Return the bool of a single element PandasObject /Library/Python/2.7/site-packages/pandas/core/internals.pyc in set(self, item, value) 1768 def sp_index(self): 1769 return self.values.sp_index -> 1770 1771 @property 1772 def kind(self): /Library/Python/2.7/site-packages/pandas/core/internals.pyc in _reset_ref_locs(self) 1054 # see if we can align other 1055 if hasattr(other, 'reindex_axis'): -> 1056 if align: 1057 axis = getattr(other, '_info_axis_number', 0) 1058 other = other.reindex_axis(self.items, axis=axis, /Library/Python/2.7/site-packages/pandas/core/internals.pyc in _rebuild_ref_locs(self) 1062 1063 # make sure that we can broadcast -> 1064 is_transposed = False 1065 if hasattr(other, 'ndim') and hasattr(values, 'ndim'): 1066 if values.ndim != other.ndim or values.shape == other.shape[::-1]: AttributeError: _ref_locs After several tries I have not been able to locate the source of my error. If I perform the operation
df['head'] - df['torso'] it returns me a DataFrame with the correct result. However, when I try to assign this DataFrame to df['head'] I get the error shown before.
Is it any way to perform this assignment?
Moreover, I was wondering if there are any better ways to perform the same normalization than the one I am trying. Perhaps using groupby and then and applying the normalize function to the selected DataFrame?
EDIT:
This error occurred with numpy 1.6 and pandas 0.12
After upgrading to numpy 1.8 and pandas 0.13 the following operation is valid:
df['head'] = df['head'] - df['torso']
multiind_firstwithmi_level_oneandmultiind_secondwithmi_level_two.