4
$\begingroup$

※I'm not good at English, so please edit my question※

I read a question ,

and tried to prove $\Gamma(x) \geq x^{3}$ For all real number $x \geq 6$ using gamma function's definition and its derivative , but I couldn't prove inequality $\Gamma(x) \geq x^{3}$

This is my attempt.


For $ n \in \mathbb{N} $, $ n! = \Gamma \left ( n + 1 \right )$

Gamma Function's definiton is $\Gamma \left ( x \right ) = \int_{0}^{\infty }t^{x-1}e^{-t} \mathrm{d}t$

Let $f\left ( x , a \right ) = \int_{0}^{a}t^{x-1}e^{-t} \mathrm{d}t$

(Then $\lim_{a \to \infty} f\left ( x,a \right ) = \Gamma (x)$)

$\Rightarrow f\left ( x,a \right ) = \lim_{n \to \infty}\sum_{k=1}^{n}\left ( \frac{a}{n} \right )^{x}k^{x-1}e^{-\frac{ka}{n}}$

For partial sum$\sum_{k=1}^{n}\left ( \frac{a}{n} \right )^{x}k^{x-1}e^{-\frac{ka}{n}}$ , $ 0 \leq \frac{k}{n} \leq 1$ Because $ n \geq k \geq 1$

Let $ K = \frac{ka}{n}$ ( $ a \geq K \geq 0 $)

Then $\sum_{k=1}^{n}\left ( \frac{a}{n} \right )^{x}k^{x-1}e^{-\frac{ka}{n}}= \frac{a}{n}\sum_{k=1}^{n} K^{x-1}e^{-K}$

Let $ 0 < a < n$ , $ 1 > C = \frac{a}{n}$ ($K=kC$)

We get$\sum_{k=1}^{n}\left ( \frac{a}{n} \right )^{x}k^{x-1}e^{-\frac{ka}{n}}= C^{x} \sum_{k=1}^{n}k^{x-1}e^{-Ck}$


But, I think that isn't proper approaching

How proof inequality $\Gamma(x) \geq x^{3}$ using gamma function's definition?

I don't have any idea for proving this

$\endgroup$
3
  • 1
    $\begingroup$ Your inequality is clearly false as written. $\Gamma(6) = 120$ and $6^3 = 216$, so we have $\Gamma(6) < 6^3$ right away. I think you want $\Gamma(x+1)\geq x^3$ for $x\geq 6$, or $\Gamma(x)\geq (x-1)^3$ for $x\geq 7$. $\endgroup$ Commented Aug 11, 2017 at 5:19
  • $\begingroup$ Given the linked question, I guess conjecture should probably be $\Gamma(x+1)\geq x^3$ for $x\geq6$. $\endgroup$ Commented Aug 11, 2017 at 5:21
  • $\begingroup$ Oh, It's my mistake ($\Gamma(x) \geq x^3$ for $x\geq 6$). I mean $ \Gamma(x+1) \geq x^3$ for $x\geq6$ . $\endgroup$ Commented Aug 11, 2017 at 6:02

1 Answer 1

1
$\begingroup$

1) Statement is false as stated: $$\Gamma\left(6\right) = 5!=120$$ $$6^{3} = 216$$

2) Proposition: $\Gamma\left(x\right)\geq x^{3}$ for all real $x\geq7$.

Proof: $$\frac{\Gamma\left(x\right)}{x^{3}}=\frac{\left(x-1\right)\Gamma\left(x-1\right)}{x^{3}}=...=\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)}{x^{3}}\Gamma\left(x-4\right)$$ Then, since $\Gamma\left(x-4\right)\geq1$ for $x\geq5$: $$\frac{\Gamma\left(x\right)}{x^{3}}\geq\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)}{x^{3}},\textrm{ }\forall x\geq5$$

Next: $$\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)}{x^{3}}=\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)\left(1-\frac{3}{x}\right)\left(x-4\right)$$ Then, $x\geq7$ implies $-\frac{1}{x}\geq-\frac{1}{7}$.

Thus:

$$\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)\left(1-\frac{3}{x}\right)\left(x-4\right)\geq\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{3}{7}\right)\left(7-4\right)=\frac{360}{343}\geq1$$

Thus, $x\geq7$ implies $$\frac{\Gamma\left(x\right)}{x^{3}}\geq1$$.

Q.E.D.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.