View source on GitHub |
String to Id table that assigns out-of-vocabulary keys to hash buckets.
Inherits From: StaticVocabularyTable, TrackableResource
tf.compat.v1.lookup.StaticVocabularyTable( initializer, num_oov_buckets, lookup_key_dtype=None, name=None, experimental_is_anonymous=False ) For example, if an instance of StaticVocabularyTable is initialized with a string-to-id initializer that maps:
init = tf.lookup.KeyValueTensorInitializer(keys=tf.constant(['emerson', 'lake', 'palmer']),values=tf.constant([0, 1, 2], dtype=tf.int64))table = tf.lookup.StaticVocabularyTable(init,num_oov_buckets=5)
The Vocabulary object will performs the following mapping:
emerson -> 0lake -> 1palmer -> 2<other term> -> bucket_id, wherebucket_idwill be between3and3 + num_oov_buckets - 1 = 7, calculated by:hash(<term>) % num_oov_buckets + vocab_size
If input_tensor is:
input_tensor = tf.constant(["emerson", "lake", "palmer","king", "crimson"])table[input_tensor].numpy()array([0, 1, 2, 6, 7])
If initializer is None, only out-of-vocabulary buckets are used.
Example usage:
num_oov_buckets = 3vocab = ["emerson", "lake", "palmer", "crimnson"]import tempfilef = tempfile.NamedTemporaryFile(delete=False)f.write('\n'.join(vocab).encode('utf-8'))f.close()
init = tf.lookup.TextFileInitializer(f.name,key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE,value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER)table = tf.lookup.StaticVocabularyTable(init, num_oov_buckets)table.lookup(tf.constant(["palmer", "crimnson" , "king","tarkus", "black", "moon"])).numpy()array([2, 3, 5, 6, 6, 4])
The hash function used for generating out-of-vocabulary buckets ID is Fingerprint64.
Note that the out-of-vocabulary bucket IDs always range from the table size up to size + num_oov_buckets - 1 regardless of the table values, which could cause unexpected collisions:
init = tf.lookup.KeyValueTensorInitializer(keys=tf.constant(["emerson", "lake", "palmer"]),values=tf.constant([1, 2, 3], dtype=tf.int64))table = tf.lookup.StaticVocabularyTable(init,num_oov_buckets=1)input_tensor = tf.constant(["emerson", "lake", "palmer", "king"])table[input_tensor].numpy()array([1, 2, 3, 3])
Args | |
|---|---|
initializer | A TableInitializerBase object that contains the data used to initialize the table. If None, then we only use out-of-vocab buckets. |
num_oov_buckets | Number of buckets to use for out-of-vocabulary keys. Must be greater than zero. If out-of-vocab buckets are not required, use StaticHashTable instead. |
lookup_key_dtype | Data type of keys passed to lookup. Defaults to initializer.key_dtype if initializer is specified, otherwise tf.string. Must be string or integer, and must be castable to initializer.key_dtype. |
name | A name for the operation (optional). |
experimental_is_anonymous | Whether to use anonymous mode for the table (default is False). In anonymous mode, the table resource can only be accessed via a resource handle. It can't be looked up by a name. When all resource handles pointing to that resource are gone, the resource will be deleted automatically. |
Raises | |
|---|---|
ValueError | when num_oov_buckets is not positive. |
TypeError | when lookup_key_dtype or initializer.key_dtype are not integer or string. Also when initializer.value_dtype != int64. |
Attributes | |
|---|---|
initializer | |
key_dtype | The table key dtype. |
name | The name of the table. |
resource_handle | Returns the resource handle associated with this Resource. |
value_dtype | The table value dtype. |
Methods
lookup
lookup( keys, name=None ) Looks up keys in the table, outputs the corresponding values.
It assigns out-of-vocabulary keys to buckets based in their hashes.
| Args | |
|---|---|
keys | Keys to look up. May be either a SparseTensor or dense Tensor. |
name | Optional name for the op. |
| Returns | |
|---|---|
A SparseTensor if keys are sparse, a RaggedTensor if keys are ragged, otherwise a dense Tensor. |
| Raises | |
|---|---|
TypeError | when keys doesn't match the table key data type. |
size
size( name=None ) Compute the number of elements in this table.
__getitem__
__getitem__( keys ) Looks up keys in a table, outputs the corresponding values.
View source on GitHub