View source on GitHub |
Computes the crossentropy metric between the labels and predictions.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.BinaryCrossentropy( name='binary_crossentropy', dtype=None, from_logits=False, label_smoothing=0 ) Used in the notebooks
| Used in the tutorials |
|---|
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Example:
Example:
m = keras.metrics.BinaryCrossentropy()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])m.result()0.81492424
m.reset_state()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],sample_weight=[1, 0])m.result()0.9162905
Usage with compile() API:
model.compile( optimizer='sgd', loss='mse', metrics=[keras.metrics.BinaryCrossentropy()]) Attributes | |
|---|---|
dtype | |
variables | |
Methods
add_variable
add_variable( shape, initializer, dtype=None, aggregation='sum', name=None ) add_weight
add_weight( shape=(), initializer=None, dtype=None, name=None ) from_config
@classmethodfrom_config( config )
get_config
get_config() Return the serializable config of the metric.
reset_state
reset_state() Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result() Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state() stateless_result
stateless_result( metric_variables ) stateless_update_state
stateless_update_state( metric_variables, *args, **kwargs ) update_state
update_state( y_true, y_pred, sample_weight=None ) Accumulate statistics for the metric.
__call__
__call__( *args, **kwargs ) Call self as a function.
View source on GitHub