View source on GitHub |
Calculates the number of true positives.
Inherits From: Metric
tf.keras.metrics.TruePositives( thresholds=None, name=None, dtype=None ) Used in the notebooks
| Used in the tutorials |
|---|
If sample_weight is given, calculates the sum of the weights of true positives. This metric creates one local variable, true_positives that is used to keep track of the number of true positives.
If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.
Example:
m = keras.metrics.TruePositives()m.update_state([0, 1, 1, 1], [1, 0, 1, 1])m.result()2.0
m.reset_state()m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])m.result()1.0
Attributes | |
|---|---|
dtype | |
variables | |
Methods
add_variable
add_variable( shape, initializer, dtype=None, aggregation='sum', name=None ) add_weight
add_weight( shape=(), initializer=None, dtype=None, name=None ) from_config
@classmethodfrom_config( config )
get_config
get_config() Return the serializable config of the metric.
reset_state
reset_state() Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result() Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state() stateless_result
stateless_result( metric_variables ) stateless_update_state
stateless_update_state( metric_variables, *args, **kwargs ) update_state
update_state( y_true, y_pred, sample_weight=None ) Accumulates the metric statistics.
| Args | |
|---|---|
y_true | The ground truth values. |
y_pred | The predicted values. |
sample_weight | Optional weighting of each example. Defaults to 1. Can be a tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true. |
__call__
__call__( *args, **kwargs ) Call self as a function.
View source on GitHub