View source on GitHub |
Base class for defining a parallel dataset using Python code.
tf.keras.utils.PyDataset( workers=1, use_multiprocessing=False, max_queue_size=10 ) Every PyDataset must implement the __getitem__() and the __len__() methods. If you want to modify your dataset between epochs, you may additionally implement on_epoch_end(). The __getitem__() method should return a complete batch (not a single sample), and the __len__ method should return the number of batches in the dataset (rather than the number of samples).
Notes:
PyDatasetis a safer way to do multiprocessing. This structure guarantees that the model will only train once on each sample per epoch, which is not the case with Python generators.- The arguments
workers,use_multiprocessing, andmax_queue_sizeexist to configure howfit()uses parallelism to iterate over the dataset. They are not being used by thePyDatasetclass directly. When you are manually iterating over aPyDataset, no parallelism is applied.
Example:
from skimage.io import imread from skimage.transform import resize import numpy as np import math # Here, `x_set` is list of path to the images # and `y_set` are the associated classes. class CIFAR10PyDataset(keras.utils.PyDataset): def __init__(self, x_set, y_set, batch_size, **kwargs): super().__init__(**kwargs) self.x, self.y = x_set, y_set self.batch_size = batch_size def __len__(self): # Return number of batches. return math.ceil(len(self.x) / self.batch_size) def __getitem__(self, idx): # Return x, y for batch idx. low = idx * self.batch_size # Cap upper bound at array length; the last batch may be smaller # if the total number of items is not a multiple of batch size. high = min(low + self.batch_size, len(self.x)) batch_x = self.x[low:high] batch_y = self.y[low:high] return np.array([ resize(imread(file_name), (200, 200)) for file_name in batch_x]), np.array(batch_y) Attributes | |
|---|---|
max_queue_size | |
num_batches | Number of batches in the PyDataset. |
use_multiprocessing | |
workers | |
Methods
on_epoch_end
on_epoch_end() Method called at the end of every epoch.
__getitem__
__getitem__( index ) Gets batch at position index.
| Args | |
|---|---|
index | position of the batch in the PyDataset. |
| Returns | |
|---|---|
| A batch |
View source on GitHub