Split a SparseTensor into num_split tensors along axis.
tf.sparse.split( sp_input=None, num_split=None, axis=None, name=None )
If the sp_input.dense_shape[axis] is not an integer multiple of num_split each slice starting from 0:shape[axis] % num_split gets extra one dimension. For example:
indices = [[0, 2], [0, 4], [0, 5], [1, 0], [1, 1]] values = [1, 2, 3, 4, 5] t = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=[2, 7]) tf.sparse.to_dense(t) <tf.Tensor: shape=(2, 7), dtype=int32, numpy= array([[0, 0, 1, 0, 2, 3, 0], [4, 5, 0, 0, 0, 0, 0]], dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=1) tf.sparse.to_dense(output[0]) <tf.Tensor: shape=(2, 4), dtype=int32, numpy= array([[0, 0, 1, 0], [4, 5, 0, 0]], dtype=int32)> tf.sparse.to_dense(output[1]) <tf.Tensor: shape=(2, 3), dtype=int32, numpy= array([[2, 3, 0], [0, 0, 0]], dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=0) tf.sparse.to_dense(output[0]) <tf.Tensor: shape=(1, 7), dtype=int32, numpy=array([[0, 0, 1, 0, 2, 3, 0]], dtype=int32)> tf.sparse.to_dense(output[1]) <tf.Tensor: shape=(1, 7), dtype=int32, numpy=array([[4, 5, 0, 0, 0, 0, 0]], dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=-1) tf.sparse.to_dense(output[0]) <tf.Tensor: shape=(2, 4), dtype=int32, numpy= array([[0, 0, 1, 0], [4, 5, 0, 0]], dtype=int32)> tf.sparse.to_dense(output[1]) <tf.Tensor: shape=(2, 3), dtype=int32, numpy= array([[2, 3, 0], [0, 0, 0]], dtype=int32)>
Args |
sp_input | The SparseTensor to split. |
num_split | A Python integer. The number of ways to split. |
axis | A 0-D int32 Tensor. The dimension along which to split. Must be in range [-rank, rank), where rank is the number of dimensions in the input SparseTensor. |
name | A name for the operation (optional). |
Returns |
num_split SparseTensor objects resulting from splitting value. |
Raises |
TypeError | If sp_input is not a SparseTensor. |