View source on GitHub |
Initializer that adapts its scale to the shape of its input tensors.
Inherits From: Initializer
tf.keras.initializers.VarianceScaling( scale=1.0, mode='fan_in', distribution='truncated_normal', seed=None ) Used in the notebooks
| Used in the tutorials |
|---|
With distribution="truncated_normal" or "untruncated_normal", samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) stddev = sqrt(scale / n), where n is:
- number of input units in the weight tensor, if
mode="fan_in" - number of output units, if
mode="fan_out" - average of the numbers of input and output units, if
mode="fan_avg"
With distribution="uniform", samples are drawn from a uniform distribution within [-limit, limit], where limit = sqrt(3 * scale / n).
Examples:
# Standalone usage:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')layer = Dense(3, kernel_initializer=initializer)
Methods
clone
clone() from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) | Args | |
|---|---|
config | A Python dictionary, the output of get_config(). |
| Returns | |
|---|---|
An Initializer instance. |
get_config
get_config() Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. |
__call__
__call__( shape, dtype=None ) Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. |
View source on GitHub